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DEFLECTION OF A CIRCULAR LIQUID JET ON A FLAT PLATE

PERPENDICULAR TO THE FLOW DIRECTION
*/51

W. Schach (in Ravensburg)

i. Introduction

The deflection of a flat water jet on a flat plate perpendi-

cular and oblique to the flow direction can be determined with

the Prandtl hodograph method [I]. The outer jet shape of the

circular water jet for perpendicular impact on a flat plate was

measured in tests by Reich [2] and was represented by an empirical

equation. The problem can also be discussed mathematically, if we

consider the flow to be axisymmetric potential flow. For this

purpose we will use the same method which Trefftz [3] established

for calculating the contraction of a circular liquid jet.

2. The Trefftz method

In the following paper we use the same notation as in the

Trefftz paper [3] in order to obtain agreement for deriving the

equations. The differential equation for the potential ¢ of a

rotationally symmetric potential flow is

c--_ _-_ + ¥_=o, (i)

when the y-axis is the symmetry axis and x is the distance from

this axis. If the velocity components in the x and y directions

are given by

_= "----'_x V---- cy ,

then the Stokes stream function _ is related to the potential

function ¢ by the relationship

Instead of the two equations (2) we can establish a single equation

__x,=, _, (3)
_t cM

Numbers in margin indicate pagination of foreign text.
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Figure i. Represent-

ation of the integra-

tion path.

1--singular point

for an arbitrary integration path, if the

integration direction t and the normal

direction n are established in such a way

that the t direction corresponds to the y-

axis and the n direction corresponds to the

x-axis of the Cartesian coordinate system

(Figure i). From (3) we obtain the value

of the stream function as

(4)

In the following calculations, using the notation of Trefftz

(Figure i)

s is the singular point where the potential is to be determined

(its coordinates are x s, ys ) ,

t is the changing point along the edge of the liquid region, that

is,the integration variable (its coordinates are xt, yt ) .

In order to determine the potential ¢ at a point S(Xs, ys ) of

the liquid region, we will superimpose a source ring flow on to

the desired flow, which has a singularity at point s. The poten-

tial V(st) of this source ring flow satisfies the differential

equation (i). In addition, we postulate that V and its normal

derivative _V#n are continuous along the edge of the region. In

addition to the potential function V(st), we can also introduce

a stream function S(st), which is given by the following equation

similar to (4)

e v (s t)
s(,0 (5)

According to the Green theorem, we have the following equation

which relates the potentials _(st) and V(st)

dis- (V x grad _) -- div (q: x grad I"] = I_"div (x grad ¢) -- q_div (x grad ['). ( 6 )

If we apply the Gauss integration theorem to this equation, then

we obtain

(7)

where the edge integral is taken over the closed edge of the liquid

region with exclusion of a singular point s (Figure i).
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Figure 2. Streamllne

of a sink ring flow.

¥ t

xt zt x

Figure 3. Notation accord-

ing to Trefftz •

If we carry out the limit transition by running the diameter £ of

a circle to 0, then we obtain the following integral equations:

For a point inside the liquid region

!

_(s)=_f_ft)as(st)-_fvfsOav(O, (s)

For an arbitrary edge point

I,>=:." odvIO (9)

For a corner point whose angle = e to the outside

,,,_, _ (t)as (st) ,nL_:V(st) dv'(t) • (9a)

The streamline image of the source ring flow is shown in Figure 2.

The potential V(st) is determined as

V(st) = 2E(_)
O(st)'

where we have
• "Q

f d.
0

is the complete elliptical integral of the first kind in the

Legendre normal form where

Xa Jrt

and

e (s t) = ½(,,+ ,_

According to Figure 3 we have

,, = V(=,- =,),-,-(y,- y,),

,_}C. ;C:.:---". _ ')--7- [7

DE p.OOi. Q': ".1.,--::

/53



the distance between points t and s,

,,= f(*,+ x,)'+ (y,--y,)'

the distance of the point t from s', where s' is the new image

of the point s with respect to the y-axis. The total differential

dS(s t) is calculated as

dS(st)= e_Vifdy(t)z(e)+ e(,,)..G(_)dO(;t), (i0)

where

we set

0(s,t) is the angle between r I and r 2 at the point t and

mo m •• '. ,°

/v V '"G(_)= l--_sin'odo-- _ t/i-_-- P sin= o
o o

In equation for G(_) the first integral is a complete elIiptical

integral of the second kind in the Begendre normal form.

3. Application of the Trefftz method to the deflection of the

circular jet at a flat plate perpendicular to the flow direction

a) Assumptions and boundary conditions. The origin of the

corded system is placed at the intersection 0 of the jpt axis

and the plate. The plate forms the x-axis, so that the jet center

falls in the y-axis. The liquid region (Figure 4) which is

formed by the axes and the free jet boundary, is delimited by the

axis-parallel line DC and BA at the points where the complete jet

velocity prevails for the incoming and outgoing jet over the

entire cross-section. We will select the distance OD = 1.5 d(d)

= jet diameter) according to experiments of Reich I. OA = 2 d

according to our own experiments 2.

For the jet radius r = i, the corner points of the liquid

region then have the following coordinates

I A ; 'B C f D 0

: I
x 4 4 X : o o

y o o, J25 3 i 3 o

In order to draw in the tree 3et boundary, we already know its

direction at the point C. At C the tangent is parallel to the

1--see footnote 2 of page 51

2--see footnote 1 of page 51
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Figure 4. Representation

of the liquid region.

1--flow direction for

y-axis. In its further course, the

jet boundary does not differ much from

the tangent because (according to

Reich) the velocity is not yet highly

delayed up to an ordinate value of

y = 0.75 d. According to the continuity

equation, its free jet boundary of the

outflowing jet is a hyperbola xy =

const, if the velocity v I = const. We

integration can assume that the real jet boundary

will approach this hyperbola also before the point B. The varia-

tion of the jet boundary in the curvature area first of all has to

be established by judgement. For the further calculation, we will

set the jet velocity to be v I = i.
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In addition to the conditions of axisymmetric potential flow,

we have the following boundary conditions (Figure 4) for the edge

of the liquid region:

I. Along the y-axis (DO), the x-axis (0A) and the jet bound-

ary (BC) we have _._=o, because there is no velocity per-
_n

pendicular to the edge;

2. along DC and AB we have parallel flow, the velocity is

= i, that is we have _-----V i
I;

3. along the jet edge the velocity is constant, that is

_.

At the points A and B the potential is _(A) = _(B).

Along the free jet boundary we obtain the potential of the

point t according to the boundary condition (3) as follows

(t)= _ (B) + l(Bt), (Ii)

where l(Bt) is the length of the jet edge from B to t.

we find the potential at the point C to be

and at the point D we again have

_p (D) = _ (6").

From this



In order for _/_t to fall in the integration direction along

the jet edge, in order not to always have to use a negative sign,

we consider the flow direction to be reversed. In other words,

it flows into the region along the line AB and flows away at CD.

This only affects the result in that the potential and its deriva-

tives will have the opposite sign. Then along the line AB we have

%-g = ,

and along the line CD:

_-g = + _.

b) The integral equation. According to (9) the potential of

an edge point which is not a corner point is

(,)= _ (,)as(,,)- _ r'(_t)av(0

The first integral gives no contribution along the y-axis, because

the y-axis becomes a streamline for the source ring flow (Figure 2)

and therefore dS(st) = 0. The first edge integral is then simpli-

fied to D

(st).

The second integral

f v(,t)av (,)= _v(;,)x(,)_ (,)a,

gives no contribution except for AB and CD, because otherwise

_,--0 . Then we obtain the following when we substitute the

appropriate values for x(t) and dt,
R C

v(.,)aw<,1=-x./v(.)ay(,)+fx(t)v(,,)a_(t)
D

The integral equation therefore is

D 8 C

The further course of the calculation is as follows: For the

first integration we assume that the singular point s is along

the x-axis. In this case the x-axis becomes streamline of the

source ring flow and we have
A

f _ (,)as (_t)= o,
0

and therefore the potential ¢(t) drops out, which is first unknown

along the x-axis. From A to D according to (ii) we can express

the potential
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_(t) = 9(B) + l(Bt)

and then evaluate all of the integrals. The result is

_ (s)= _ (B)+ _,

where C 1 is a numerical value. If we know the variation of the

potential along the x-axis for the assumed jet edge with these

first integrations, then we will set this singular point along the

jet edge. For the potential #(t) we set the value #l(S) calculated

along the x-axis. On the jet edge and along the following lines

we use el(t) just like for the first integration. The e_'aluation

of the integrals then gives

_,(s) = _(B) + C,,

where C 2 is again a numerical value. The condition that the

assumed jet edge is the correct one is the following for the

singular point s = t

_,C_ = _ (t)

If this condition is not satisfied, the jet edge has to be selected

anew and the same calculation has to be repeated_

c) The evaluation of the integral equation. If the singular

point lies along the x-axis (Figure 5), then according to the above

the first integral of the equation (12) signifies as follows

D D C D

t

Figure 5. The singular

point lies on the x-axis

8

_P t ¢

A

Figure 6. The singular

point lies on the jet edge

7



For abbreviation we have introduced l(t) = l(Bt). According to

Figure 2 the value of the stream function at the point A is S(SA)

= (sA) = _ and at the point D it is S(sD)= 27, so that we have
D

dS(st)=_ . The equation for the potential then is

C D B C

After evaluation of the single integrals we obtain the following

result using the notation given in Chapter 2:

c c

;(t) E (.,)
B B

D L D

/ f d,(,)dS(st) = 4 (Y'-- Y,) (:__t).,,(st},,,, ,
c c

B B

fv(.)ay(O
,4 A

¢ c

t E re)p I,Iv(.) Io=- 2JQ-v_ x (L)a_ (0.
D D

(13a)
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With this first integration the potential _l(t) along the x-axis

is represented as a sum of ¢(B) and a numerical value which will

be called ik(t) so that

,n (t) = ,_(B) + t, (t)

and we now place the singular point s along jet boundary

(Figure 6),then we obtain the potential

D B C

For x t = x s the integrand of the first integral becomes infinite.

Therefore, we convert the integral equation into
D 8 C D

= ,, - ,_fv (st),,:(t)a_ (,) +/,r, (_)as (_,),_,F,(s) /['n (t) -,n (s)] aS (st).+ x_fv(st) dr (t)

where

The value of the stream function at the point 0 is S(s0) = o),

according to Figure 2, whereas at the point D it is S(sD) = 2n.

From this we obtain the following with consideration of the trans-

ition at the point s

D

f_ (s)as (st) = _ n (_),
0



TABLE i.

Ku_.e 2

Y, 1_,(s)- _,(s)

_-- Kurve x

*, y. l_,(s)- _,(s) x,

].75 0.307 I + o.o2, 1,7.,>

1,3*5 °'5° I at-o.o39 ,.228
I,o47 Lo J + o.o34 Lo_7

,,o 3.0 I + o.o,8 ,.o

1--curve i; 2--curve 2

t
0'306 I -- 0.008
°,50 I + O,OlZ

,.o + o.oo8
3.0 -- o.oo3

I

,,_f£"r-

i

L_r

I

I

_' ..........._

Figure 7. Determination

of investigated jet shapes.

1--curve 2; 2--curve 1

1

OF fC, _'. ,, " .... "

Q

• /.

_.. _ _b. _ _ DC_ _u .

Figure 8. Comparison of

theoretical jet shape and a

shape measured by Reich.

1--theoretical jet, measured jet

shape of Reich, (jet axis perpen-

dicular ho 1163 (illegible)),

distance between plate and

nozzle mouth 240 mm;

2--center of jet; 3--plate

and we can write the following for the integral equation

D B C

[[_, (,)- _,(,)] _s (__)+ _/v (_0__(0 -_v (_,)_(,)_• (_).[_,(,) (s)]

If we now substitute values for el(t) and _l(S) then we obtain

. [_,(_)-_, (,)]=/p, (_)- _(,)]_s (_,)- _(_s (_) _/[z (,)- _(_)]_s (_)+
s c (14)

The individual integrals may be evaluated similar to (13a). A

similar equation system can be established for the case where the

singular point lies along the y-axis. For the numerical evaluation,

we assume two jet shapes shown in Figure 7. In Table 1 we



collect the differences ¢2(s)-_l(S) for all investigated points.
We can see from Table 1 that for the first curve all of the diff-

erences are positive. For the second curve, there is a difference

of ±0.01. If we assume that these are integration errors, then

the second curve represents the free jet boundary with a good

accuracy. Reich measured the free jet boundary of a jet which

falls down perpendicularly. There is good agreement between the

measured curve and the theoretical curve (Figure 8).
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d) Velocity and pressure distribution along the plate. The

velocity variation along the plate u= _ is determined by differ-
CX

entiation of the function _(x) with respect to x (Figure 9). We

then obtain the following from the velocity curve according to

the Bernoulli equation

as well as the pressure variation along the plate. The theoretical

jet pressure perpendicular to the plate becomes the following for

the assumed boundaries of the liquid region.
4

P.= _=lxpodx.

By graphical evaluation of the integral, we obtain Po = 52.63 kg.

According to the momentum theorem, for r = 1 and v I = 1 the

theoretical jet pressure is Po = 50.97 kg. The deviation is

therefore 3.3%. In order to compare the theoretical pressure

variation with the actual pressure curve, Figure 9 shows the mea-

sured pressure for a nozzle without a needle, recalculated for

the jet radius r = 1 and the jet velocity v I = 1 I. In the same

way as for the x-axis, along the y-axis we can find the velocity

variation along the jet axis by differentiation of the function

_(y) with respect to y (Figure i0).

e) Determination of streamlines and potential lines. In

order to determine the streamlines we use the law for the velocity

distribution of a flow without work, which has the following form

1
W. Schach, see earlier paper in this article.
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'Ill

L_ A_/enl _ _r/e/eKe ._,

Figure 9. Potential,

velocity and pressure

distribution along a

plate.

1--potential; 2--

theoretical velocity

curve; 3--velocity

ratio; 4--distance from

plate y

i._ I [ I i ,_ t

. .!Y ai

_: I/\ I 1 s l I

' _ t 1 I

L,4, I 1
"/, k\hq I

Figure I0. Potential and velocity

distribution along the jet axis

(y-axis) .

1--pressure in mm water column;

2--velocity ratio; 3--theoretical

velocity curve; 4--theoretical

pressure curve; 5--measured

pressure curve p millimeter water

column; 6--distance from jet center

along a potential line of the meridional plane vs = const, where

s is the distance of two following potential lines. If we con-

sider streamlines which separate layers of equal amounts of water,

then we have

AQ = 2rn_n,

if An is the distance between streamlines along the potential line

and r is the distance of the center of An referred to the y-axis.

From this we obtain

s - r-const
An

The streamlines form rectangles with the potential lines, and the

side ratios are proportional to their distance from the axis of

rotation.
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In the liquid region, two streamlines are known. First of all,

the jet boundary, then the y-axis and after this the x-axis. Four

partial channels with equal swallowing capacity are assumed. The
1

one between _ = 0 and _ = _ is divided in half and the inner half

is again subdivided into two equal channels. The distance of the

partial channels along the lines AB and CD and is found from the

continuity equation (Figure ii). Two following equipotential lines

intersect equal length distances along the free jet boundary. The

points at equal potential along the x- and y-axis are

taken from diagrams in Figures 9 and i0. In order to subdivide the

liquid region into rectangles (Figure ii), it is found to be suit-

able to draw these simultaneously from CD and AB. Then we obtain

a good check because even for very small errors in the variation

of the streamlines, the two branches will deviate greatly from

one another along the potential line _ = 0.

4. Summary Uslng the Trefftz method, we can transfer the diff-

erential equation of the potential

y_

into an integral equation

n (s) (t)dS (s,)--fr(st)d (t)

for an axisymmetric potential flow, by superposition with a source

ring flow. This equation applies for a usual edge point. The

integrals extend over the edge of the entire region with the

exception of the singular point s. When applying this integral

equation to the deflection of a circular liquid jet on a flat

plate perpendicular to the floor direction, the difficulty in

solving the problem is the fact that the jet edge along which the

integration is to take place is not known. First of all, we

must assume and then from the condition _/_t = const we obtain

the potential _(s) along the jet edge. Using the integral

equation we determine the potential _(s) along the x-axis for

singular points s of the x-axis. For the second integration, we

place the singular point s along the jet edge and calculate Cs(S)

from the integral equation. The condition that the assumed jet

edge is the correct one is ga(s)=_,(s)=o The numerical

/59
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o

Pl_enldnge _

Figure 11. Determination of the streamlines and

potential lines.
1--length of jet axis in _; 2--plate length in

execution resulted in a deviation of ±0.01 for the second assumed

jet edge. If we compare this theoretical jet shape with the

comparison results of Reich, then we obtain very good agreement.

From the variation of the potential over the x-axis, we deter-

mine the velocity and pressure variation along the plate. The

integral po=/_xpod x
0

represents the theoretical jet pressure on a plate. Comparison

with the value Po determined from the momentum theorem resulted

in a deviation of 3.3%. If the jet boundary is specified, then

the streamlines can be determined with one of the well known

drafting methods, or with electrical experiments.

(Communications from the Institute for Water Machines of

the Technical University Hannover).

(Recd. November 28, 1934)
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